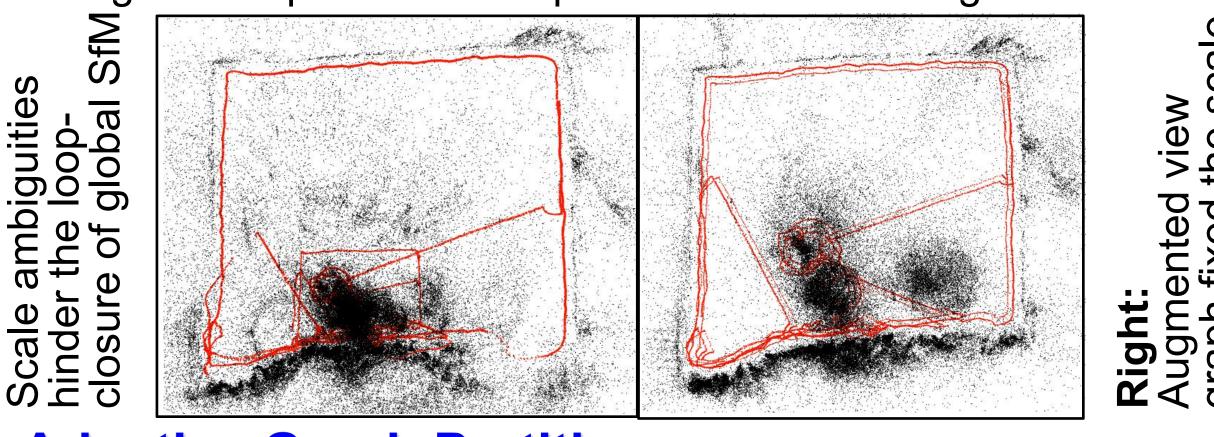
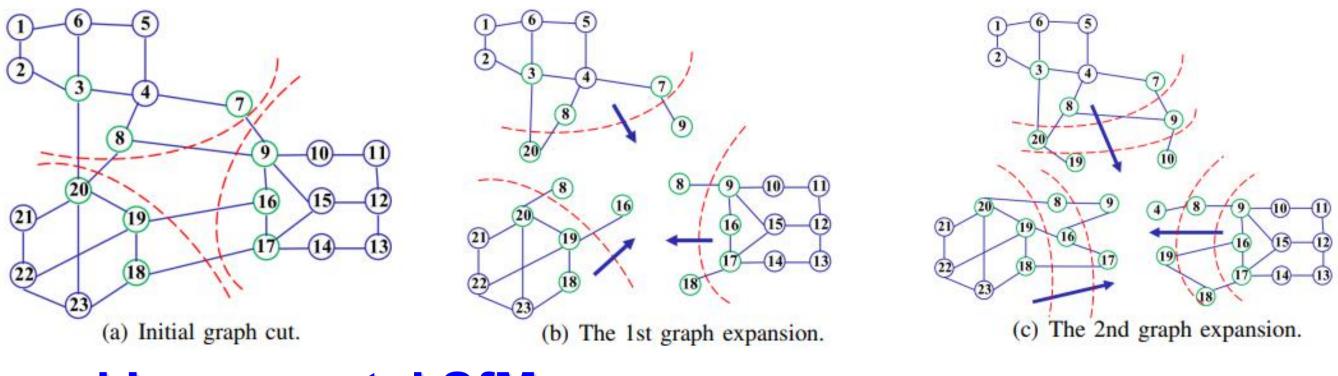


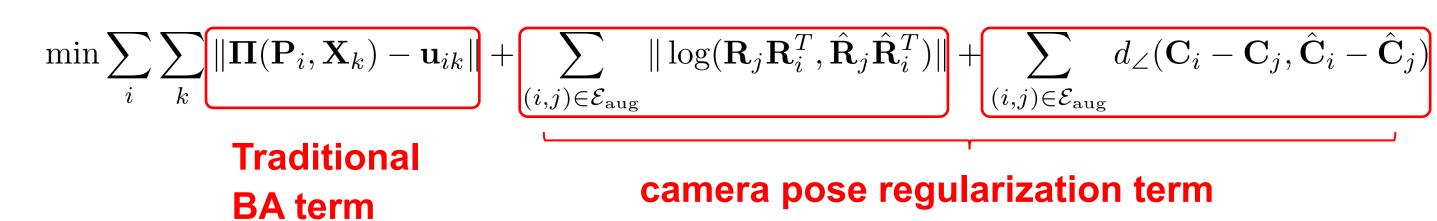
AdaSfM: From Coarse Global to Fine Incremental Adaptive Structure from Motion


Yu Chen¹ Zihao Yu² Shu Song³ Tianning Yu⁴ Jianming Li⁴ Gim Hee Lee¹ ¹National University of Singapore ²ByteDance ³Nreal ⁴Segway-Navimow

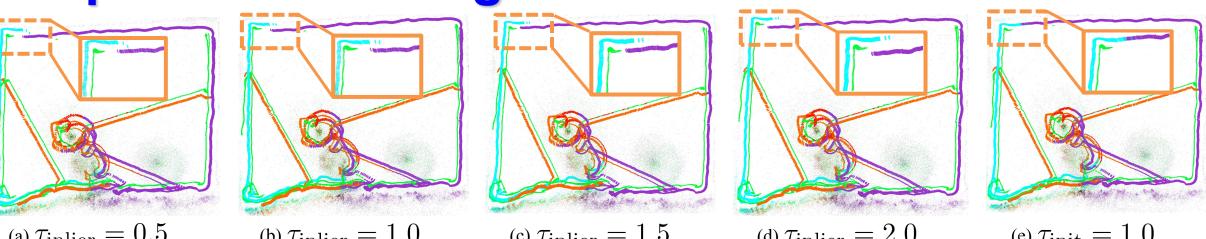


Global SfM with Augmented View Graph

- Adding extra edges (from consecutive IMU and wheel encoder data) can link nodes to the maximally parallel rigid components
- Filter wrong relative translations by 1DSfM
- > Replace the potentially wrong two view geometries
- > Solving the RA problem & TA problem within the augmented view graph



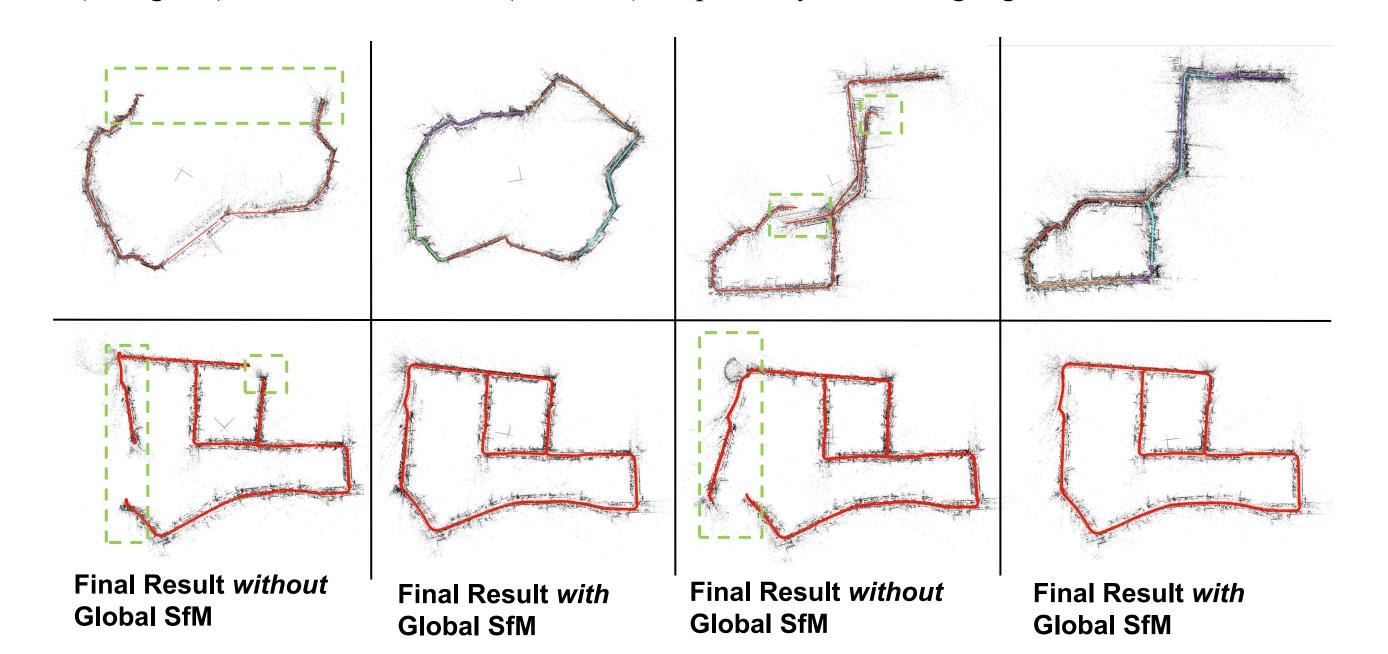
Adaptive Graph Partition



Local Incremental SfM

- Image Registration
 - > Perspective-n-point (i.e. P3P):
 - \triangleright Single Rotation Averaging + Median($\{\mathbf{t}_i\}$)
 - > The best camera pose for current registered image is selected by reprojecting 3D point to image plane and then checking the pixel residuals
- Global Refinement

Adaptive Global Alignment

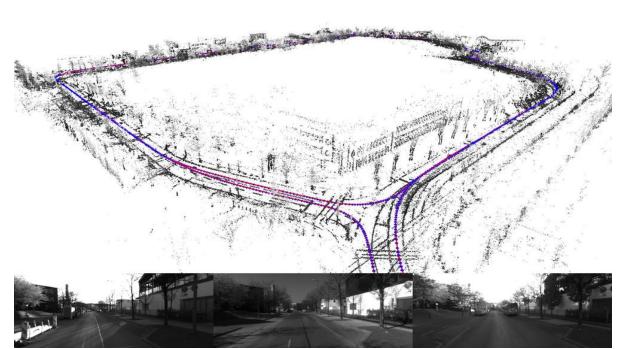


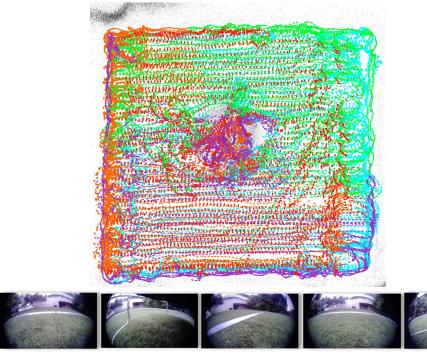
(a)-(d) are alignment results by using different fixed inlier threshold within RANSAC; (e) is the result with our adaptive global alignment algorithm with an initial inlier threshold 1.0.

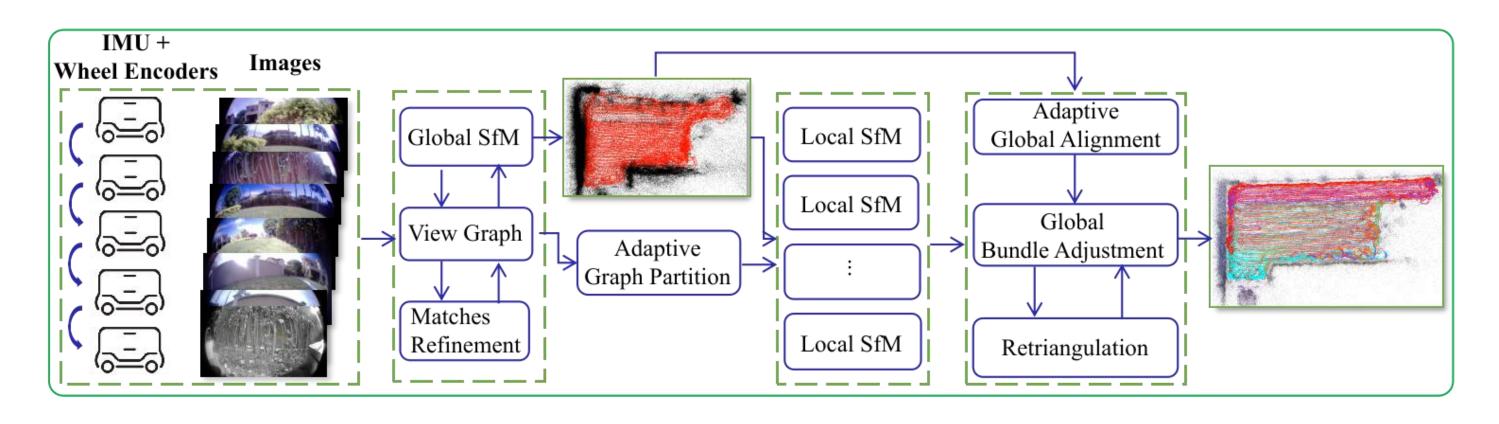
Experiments

Scene	Sequence	COLMAP [8]					Ours (Global SfM)					Ours (final)				
		N_c	N_p	$\Delta {f R}$	$\Delta \mathbf{t}$	T	N_c	N_p	$\Delta {f R}$	$\Delta \mathbf{t}$	T	N_c	N_p	$\Delta {f R}$	$\Delta \mathbf{t}$	T
Neighborhood	recording_2020-10-07_14-53-52	6,326	137,135	0.65	1.78	334.90	6,036	66,777	2.52	1.17	14.68	6,033	109,483	0.74	0.52	123.90
	recording_2020-12-22_11-54-24	6,518	127,892	0.55	3.68	354.35	6,144	64,405	1.10	0.86	15.83	6,144	102,857	0.51	0.62	151.88
	recording_2020-03-26_13-32-55	7,414	148,848	0.61	1.24	603.13	5,982	70,066	0.92	0.79	17.10	5,982	111,807	1.11	0.98	157.76
	recording_2020-10-07_14-47-51	6,688	152,307	0.56	1.67	359.03	6,248	76,305	2.20	1.17	15.70	6,248	121,657	0.75	0.74	152.85
	recording_2021-02-25_13-25-15	6,174	138,807	0.75	1.05	325.65	5,238	62,879	1.00	1.14	15.12	5,238	106,609	0.46	0.81	202.85
	recording_2021-05-10_18-02-12	7,784	149,528	3.04	9.57	444.85	5,834	61,889	1.49	1.38	12.76	5,834	101,102	0.47	0.59	153.36
	recording_2021-05-10_18-32-32	7,174	141,864	2.77	19.15	416.34	6,046	89,010	1.14	1.03	23.81	6,046	142,430	1.49	1.34	264.75
Business Park	recording_2021-01-07_13-12-23	8,016	109,399	0.72	0.75	643.22	9,010	72,096	1.76	1.60	56.16	9,010	100,057	0.66	0.51	465.34
	recording_2020-10-08_09-30-57	11,520	127,013	0.37	1.57	1284.44	8,278	66,087	1.59	1.51	48.72	8,278	108,000	0.63	0.45	366.83
	recording_2021-02-25_14-16-43	7,414	148,848	0.61	1.24	603.13	5,982	70,066	0.92	0.79	17.10	5,982	111,807	1.11	0.98	157.76
Old Town	recording_2020-10-08_11-53-41	19,332	279,989	-	-	2454	12,910	181,569	2.23	2.81	45.72	12,048	279,127	0.55	0.56	254.7
	recording_2021-01-07_10-49-45	16.420	307,383	8.63	360.51	1496.6	12,728	194,340	2.56	3.14	53.18	12,728	327,348	1.55	1.03	238.82
	recording_2021-02-25_12-34-08	18,950	305,461	-	2.7	2392.98	12,387	182,940	2.02	3.14	40.97	12,387	302,833	0.63	0.74	683.97
Office Loop	recording_2020-03-24_17-36-22	10,188	209,942	1.17	3.40	822.38	9,522	126,680	2.28	2.38	31.87	9,377	214,285	0.97	0.98	166.54
	recording_2020-03-24_17-45-31	8,582	195,738	0.92	3.04	865.48	9,186	122,713	2.79	2.20	33.91	8,940	205,790	0.84	0.85	209.00
	recording_2020-04-07_10-20-31	10,350	223.649	4.22	42.44	795.68	10,184	138,446	2.53	1.78	39.83	10,184	224,499	1.47	1.14	253.24
	recording_2020-06-12_10-10-57	9,990	236,593	18.97	83.94	705.93	10,150	164,062	1.92	1.61	37.32	10,150	246,516	0.76	0.87	206.48
	recording_2021-01-07_12-04-03	9,164	475,950	0.71	2.58	1000.75	10,300	143,715	3.32	2.39	48.68	10,300	223,676	1.08	0.67	249.42
	recording_2021-02-25_13-51-57	9,574	214,695	0.84	2.84	773.32	9,426	122,746	3.80	2.68	28.96	9,426	204,289	1.01	0.91	173.29

Comparison of runtime and accuracy on the 4Seasons datasets. T denotes the runtime (in minutes). N_c, N_p denote the number of registered images and 3D points, respectively. R denotes the mean rotation error (in degrees) and translation error (in meters), respectively, and we highlight the best results in bold.




Challenges in Visual Reconstruction Wrong two-view geometries



> Reconstructing large-scale scenes is time-consuming

System Pipeline of AdaSfM

Challenges of Global SfM

- Wrong two-view geometries (edge outliers)
- Scale ambiguities of translation averaging
- Determine a solvable view graph is time-consuming
 - Involve solving a system of polynomial equations with a large number of unknowns
 - > The practical solvabilitytesting up to minimal graphs with up to 90 nodes