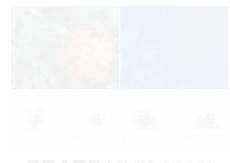


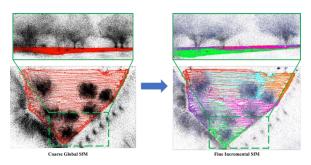
AdaSfM [ICRA 2023]

DOGS [NeurIPS 2024]



DBARF [CVPR 2023]

DReg-NeRF [ICCV 2023]



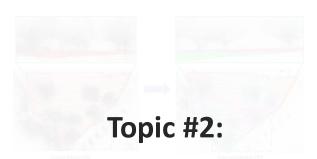
AdaSfM [ICRA 2023]

DOGS [NeurIPS 2024]

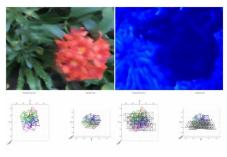
Topic #1:

Fast and Distributed Neural 3D Reconstruction

DReg-NeRF [ICCV 2023]

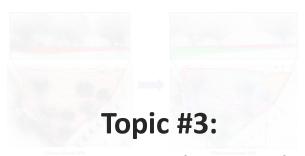


Robust Neural Rendering via Pose-Aware Learning



DBARF [CVPR 2023]

DReg-NeRF [ICCV 2023]



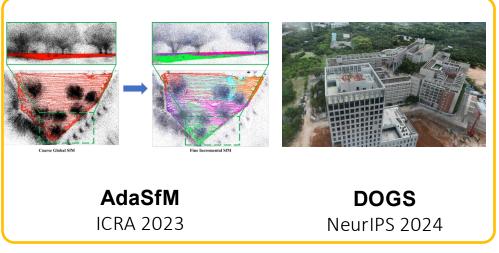
Geometric Understanding with Neural Representation

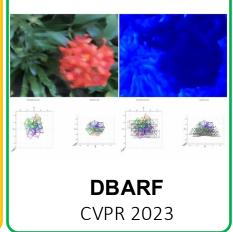
DOGS [NeurIPS 2024]

DReg-NeRF [ICCV 2023]

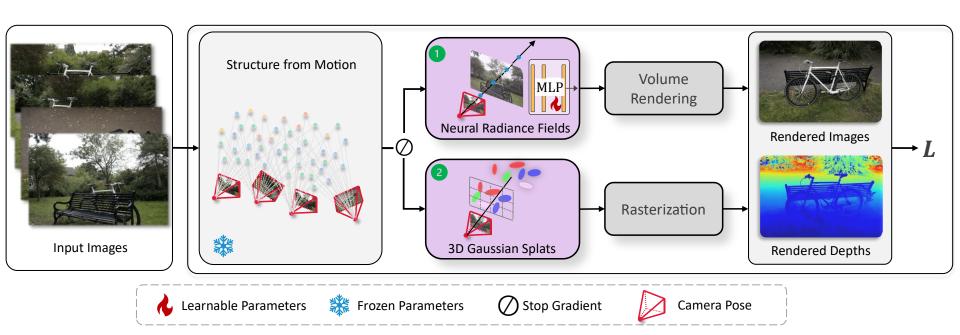
This Thesis

Develop <u>Distributed System</u> and <u>Neural Scene Representations</u> for 3D Reconstruction, Rendering, and Geometry Understanding



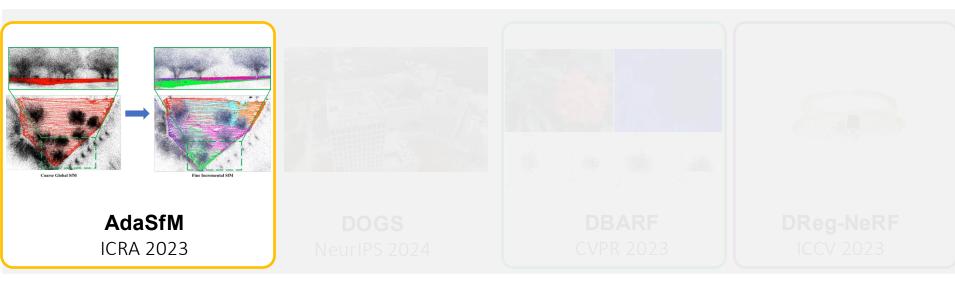


The Modern Neural 3D Reconstruction System



Part #1

Develop <u>Distributed System</u> and <u>Neural Scene Representations</u> for <u>3D Reconstruction</u>, <u>Rendering</u>, and <u>Geometry Understanding</u>



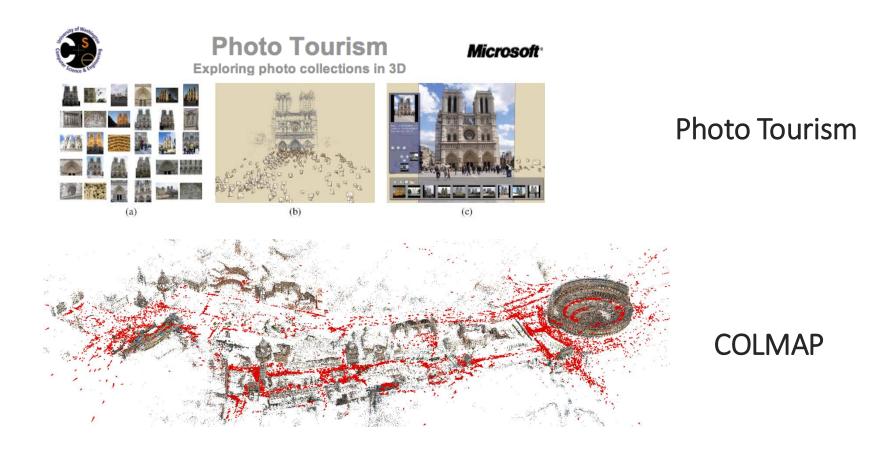
Key Challenges

Structure from Motion

- Reconstruct majorly from 2D images
- Reconstruct 3D scenes beyond single server
- Reconstruct 3D scenes at arbitrary scale

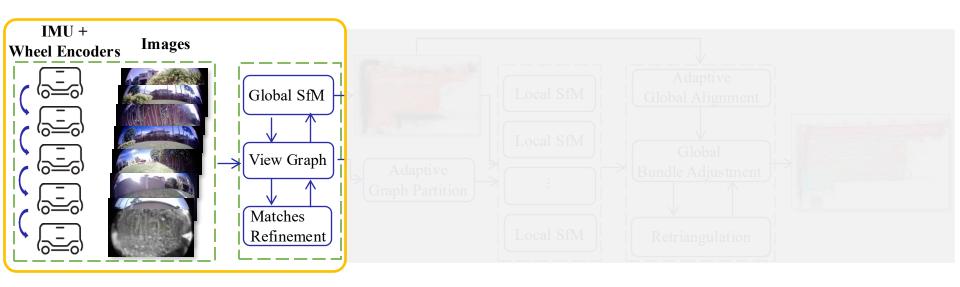
Works well on small scale scenes, but **fragile** and **slowly** on **wild large-scale** areas

Seminal Papers of SfM



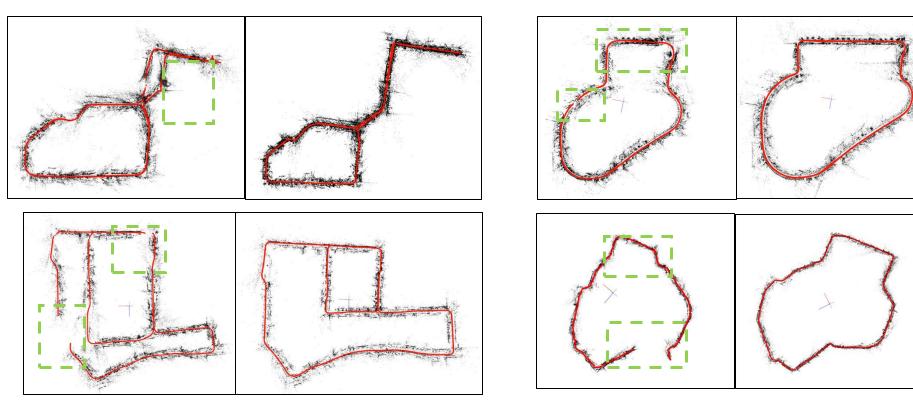
- Noah Snavely, Steven M. Seitz, Richard Szeliski, Photo tourism: Exploring photo collections in 3D. TOG 2006
- Johannes L. Schonberger, Jan-Michael Frahm. Structure from Motion Revisited. CVPR 2016

Robustness in Structure from Motion



- Fuse low-cost sensor data into vision-based view graph
- Leveraging global SfM guidance

Effectiveness of Augmented View Graph

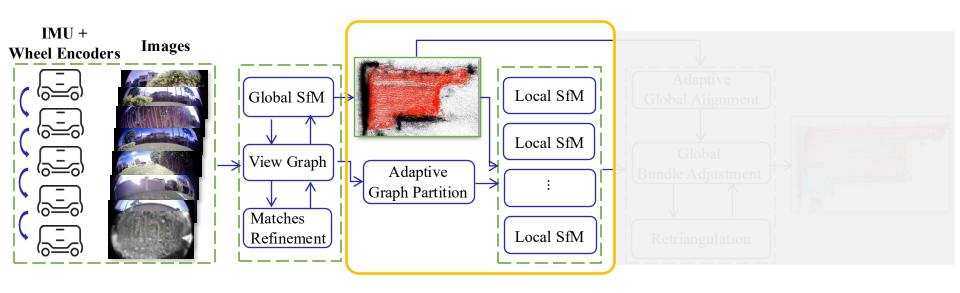


Global SfM from raw view graph

Global SfM from *augmented view graph*

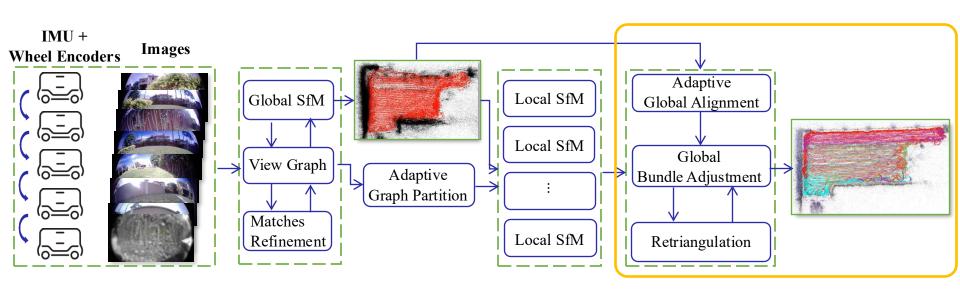
Global SfM from raw view graph Global SfM from augmented view graph

Efficiency in Structure from Motion



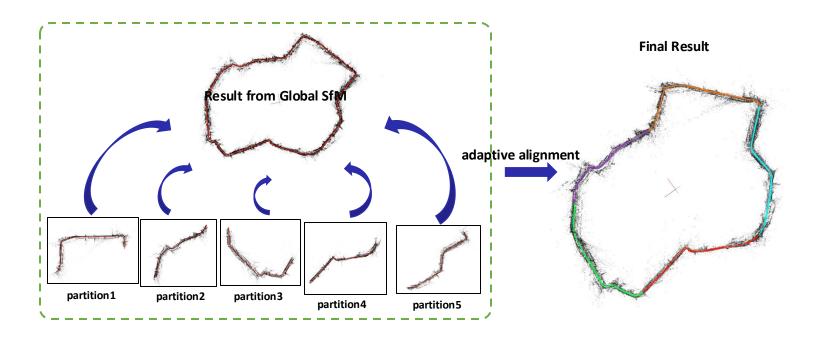
- **Divide-and-Conquer:** Split large scene into smaller blocks
- Leveraging distribute computing resources

Robustness in Structure from Motion



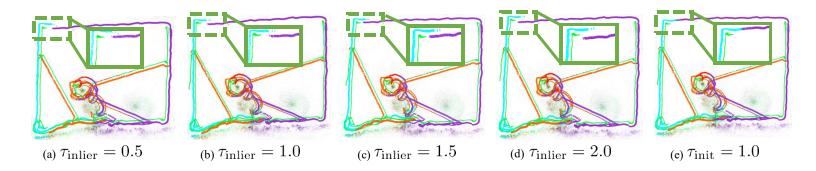
- Fuse low-cost sensor data into vision-based view graph
- Leveraging global SfM guidance
- Adaptive alignment to handle scale ambiguity

Robustness in Structure from Motion – Adaptive Alignment



Robustness in Structure from Motion – Adaptive Alignment

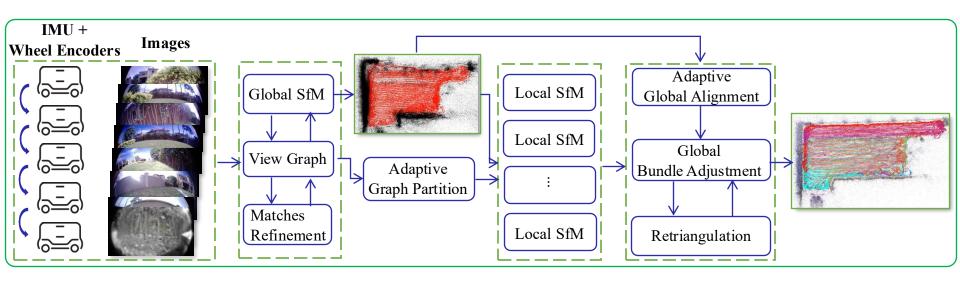
- Similarity transformation estimation is crucial!
 - Outliers in registered camera poses
 - Unknown absolute scale of inlier threshold



(a)-(d) are alignment results by using different fixed inlier threshold within RANSAC; (e) is the result with our adaptive global alignment algorithm with an initial inlier threshold 1.0.

Highlight A

AdaSfM accelerates SfM by 3-5 times on single machine (~12 times on 3 servers) with higher camera pose accuracy



Results

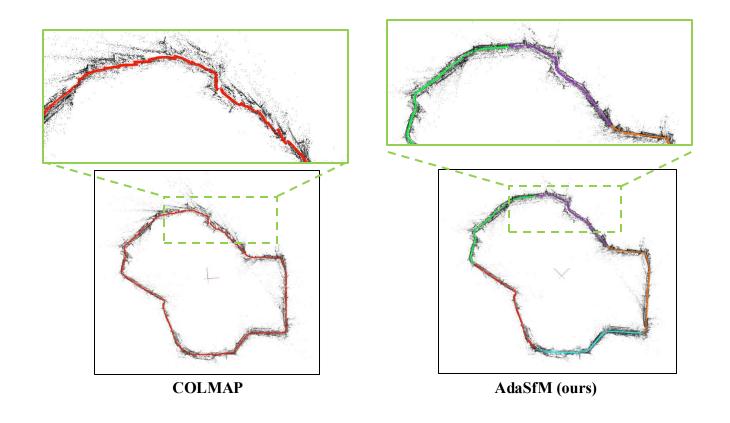
Reconstruction on Autonomous Driving Datasets

Scene	Sequence	COLMAP [8]					Ours (Global SfM)					Ours (final)				
		N_c	N_p	$\Delta {f R}$	$\Delta \mathbf{t}$	T	N_c	N_p	$\Delta {f R}$	$\Delta \mathbf{t}$	T	N_c	N_p	$\Delta {f R}$	$\Delta \mathbf{t}$	T
Neighborhood	recording_2020-10-07_14-53-52	6,326	137,135	0.65	1.78	334.90	6,036	66,777	2.52	1.17	14.68	6,033	109,483	0.74	0.52	123.96
	recording_2020-12-22_11-54-24	6,518	127,892	0.55	3.68	354.35	6,144	64,405	1.10	0.86	15.83	6,144	102,857	0.51	0.62	151.88
	recording_2020-03-26_13-32-55	7,414	148,848	0.61	1.24	603.13	5,982	70,066	0.92	0.79	17.10	5,982	111,807	1.11	0.98	157.76
	recording_2020-10-07_14-47-51	6,688	152,307	0.56	1.67	359.03	6,248	76,305	2.20	1.17	15.70	6,248	121,657	0.75	0.74	152.85
	recording_2021-02-25_13-25-15	6,174	138,807	0.75	1.05	325.65	5,238	62,879	1.00	1.14	15.12	5,238	106,609	0.46	0.81	202.85
	recording_2021-05-10_18-02-12	7,784	149,528	3.04	9.57	444.85	5,834	61,889	1.49	1.38	12.76	5,834	101,102	0.47	0.59	153.36
	recording_2021-05-10_18-32-32	7,174	141,864	2.77	19.15	416.34	6,046	89,010	1.14	1.03	23.81	6,046	142,430	1.49	1.34	264.75
Business Park	recording_2021-01-07_13-12-23	8,016	109,399	0.72	0.75	643.22	9,010	72,096	1.76	1.60	56.16	9,010	100,057	0.66	0.51	465.34
	recording_2020-10-08_09-30-57	11,520	127,013	0.37	1.57	1284.44	8,278	66,087	1.59	1.51	48.72	8,278	108,000	0.63	0.45	366.81
	recording_2021-02-25_14-16-43	7,414	148,848	0.61	1.24	603.13	5,982	70,066	0.92	0.79	17.10	5,982	111,807	1.11	0.98	157.76
Old Town	recording_2020-10-08_11-53-41	19,332	279,989	-	-	2454	12,910	181,569	2.23	2.81	45.72	12,048	279,127	0.55	0.56	254.71
	recording_2021-01-07_10-49-45	16.420	307,383	8.63	360.51	1496.6	12,728	194,340	2.56	3.14	53.18	12,728	327,348	1.55	1.03	238.82
	recording_2021-02-25_12-34-08	18,950	305,461	-	-	2392.98	12,387	182,940	2.02	3.14	40.97	12,387	302,833	0.63	0.74	683.97
Office Loop	recording_2020-03-24_17-36-22	10,188	209,942	1.17	3.40	822.38	9,522	126,680	2.28	2.38	31.87	9,377	214,285	0.97	0.98	166.54
	recording_2020-03-24_17-45-31	8,582	195,738	0.92	3.04	865.48	9,186	122,713	2.79	2.20	33.91	8,940	205,790	0.84	0.85	209.06
	recording_2020-04-07_10-20-31	10,350	223.649	4.22	42.44	795.68	10,184	138,446	2.53	1.78	39.83	10,184	224,499	1.47	1.14	253.24
	recording_2020-06-12_10-10-57	9,990	236,593	18.97	83.94	705.93	10,150	164,062	1.92	1.61	37.32	10,150	246,516	0.76	0.87	206.48
	recording_2021-01-07_12-04-03	9,164	475,950	0.71	2.58	1000.75	10,300	143,715	3.32	2.39	48.68	10,300	223,676	1.08	0.67	249.42
	recording_2021-02-25_13-51-57	9,574	214,695	0.84	2.84	773.32	9,426	122,746	3.80	2.68	28.96	9,426	204,289	1.01	0.91	173.29

Comparison of runtime and accuracy on the 4Seasons datasets. T denotes the runtime (in minutes). N_c , N_p denote the number of registered images and 3D points, respectively. **R**, **t** denotes the mean rotation error (in degrees) and translation error (in meters), respectively, and we highlight the best results in bold.

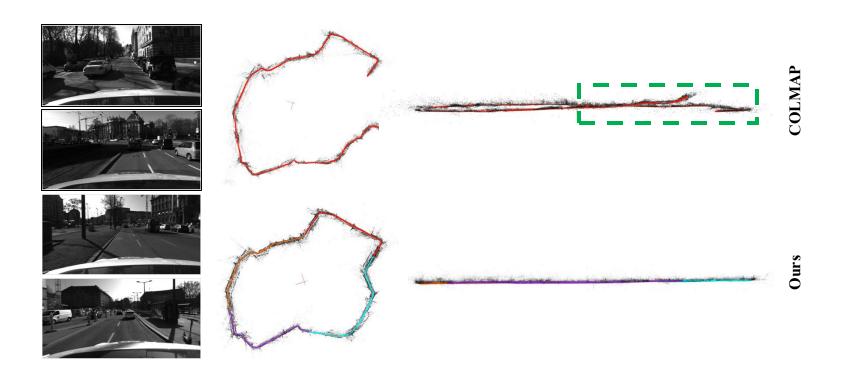
Reconstruction on Autonomous Driving Datasets

Comparison to COLMAP



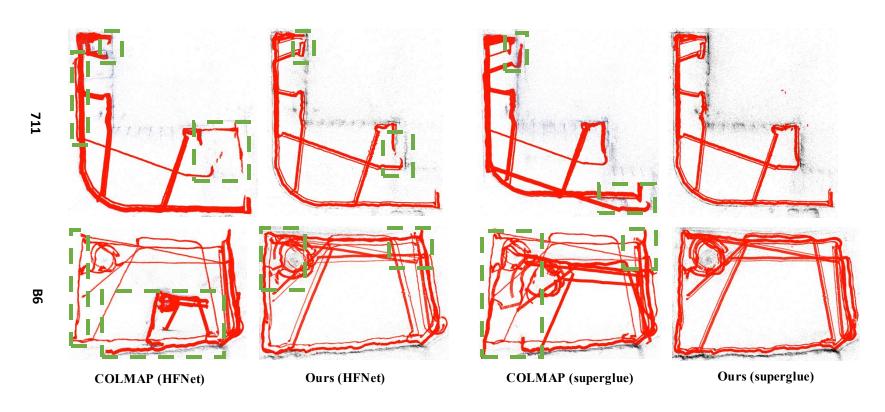
Reconstruction on Autonomous Driving Datasets

Comparison to COLMAP

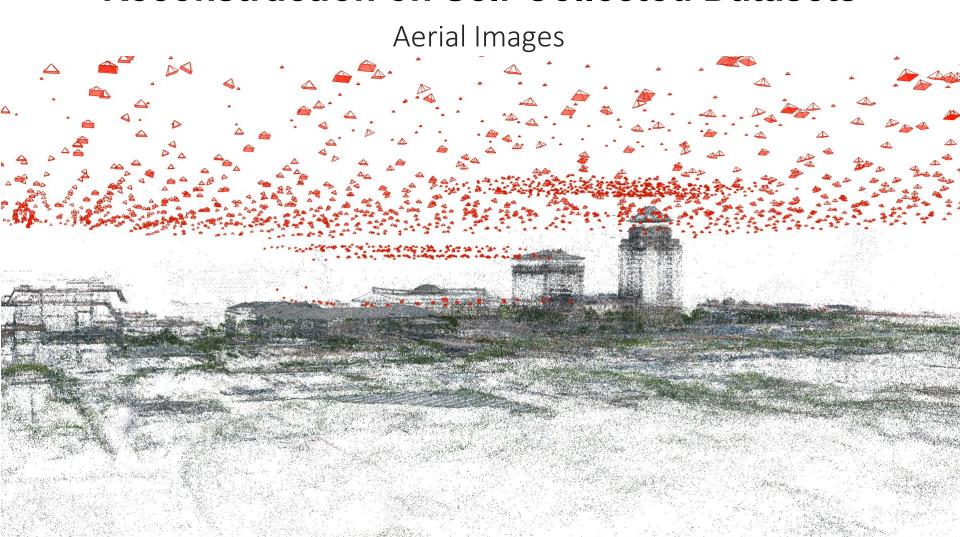


Reconstruction on Self-Collected Datasets

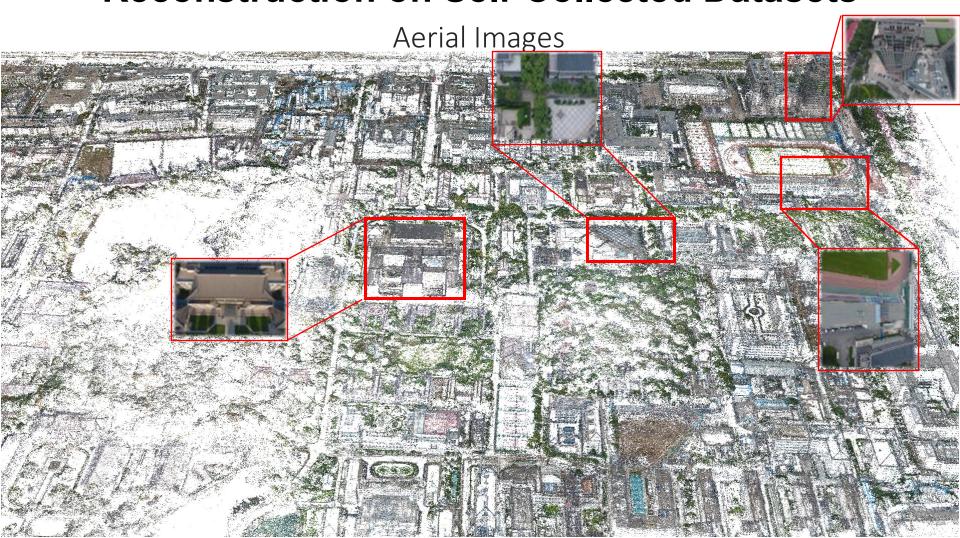
Comparison to COLMAP



Reconstruction on Self-Collected Datasets

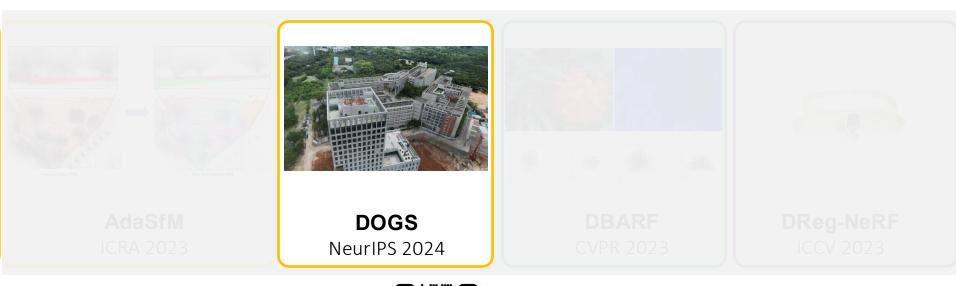


Reconstruction on Self-Collected Datasets



Part #1

Develop <u>Distributed System</u> and <u>Neural Scene Representations</u> for <u>3D Reconstruction</u>, <u>Rendering</u>, and <u>Geometry Understanding</u>



Key Challenges

Neural 3D Reconstruction using 3DGS

- Reconstruct majorly from 2D images
- Reconstruct 3D scenes beyond single server
- Reconstruct 3D scenes at arbitrary scale

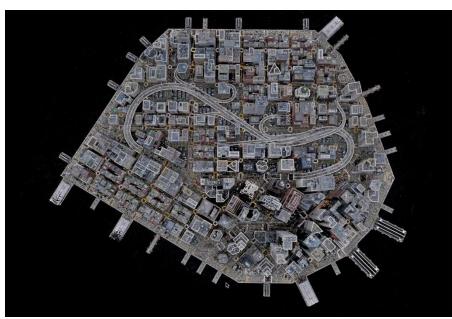
Works well on small scale scenes, but too slow when trained on large-scale areas

Key Challenges

Room Scale / Object-centric Scenes with 3DGS

Highlight A

DOGS accelerates 3DGS training by 6+ times with better rendering quality on five compute nodes

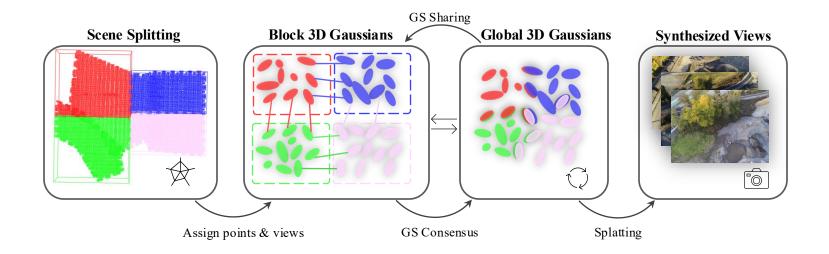


Point Clouds After Training (12.5 M 3D Gaussians)

Novel View Rendering

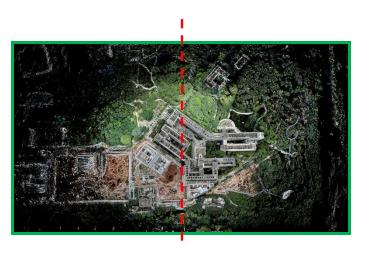
Visualization Results Recorded on Web Viewer (MacBook m1 chip, 8GB memory)

Divide-and-Conquer



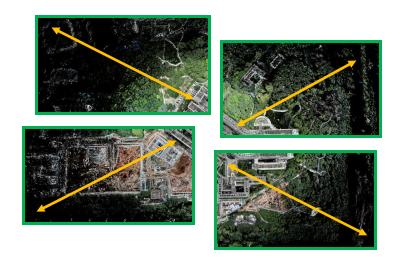
Algorithm Pipeline

Point Clouds in 3D Space



Project 3D point clouds onto ground plane

Splitting along the longer axis

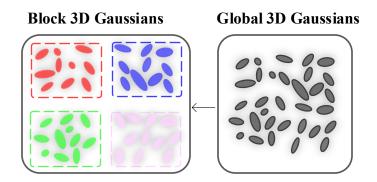


Intersected Blocks

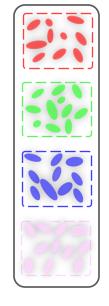
Divide-and-Conquer: Consensus and Sharing

Global 3D Gaussians

Divide-and-Conquer: Consensus and Sharing



Divide-and-Conquer: Consensus and Sharing



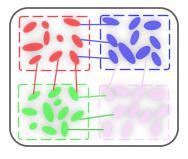
Distributedly trained on K slave nodes

How to ensure the consistency of the shared 3D Gaussians in different blocks?

Main Idea

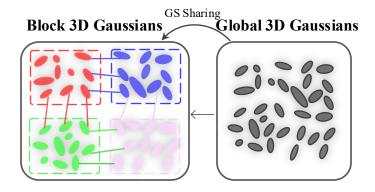
Divide-and-Conquer: Consensus and Sharing

Block 3D Gaussians



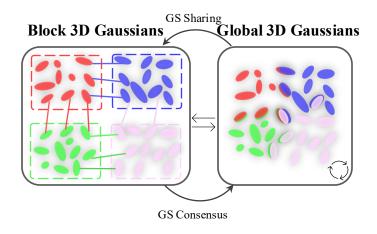
Main Idea

Divide-and-Conquer: Consensus and Sharing



Main Idea

Divide-and-Conquer: Consensus and Sharing



Results

Higher Fidelity Novel View Synthesis

Scenes	Building			Rubble			Campus			Residence			Sci-Art		
	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓
Mega-NeRF 46	20.92	0.547	0.454	24.06	0.553	0.508	23.42	0.537	0.636	22.08	0.628	0.401	25.60	0.770	0.312
Switch-NeRF 31	21.54	0.579	0.397	24.31	0.562	0.478	23.62	0.541	0.616	22.57	0.654	0.352	26.51	0.795	0.271
3D-GS [18]	22.53	0.738	0.214	25.51	0.725	0.316	23.67	0.688	0.347	22.36	0.745	0.247	24.13	0.791	0.262
VastGaussian† [22]	21.80	0.728	0.225	25.20	0.742	0.264	23.82	0.695	0.329	21.01	0.699	0.261	22.64	0.761	0.261
Hierarchy-GS 19	21.52	0.723	0.297	24.64	0.755	0.284	-	-	-	_	-	-	_	_	-
DoGaussian	22.73	0.759	0.204	25.78	0.765	0.257	24.01	0.681	0.377	21.94	0.740	0.244	24.42	0.804	0.219

Table 1: Quantitative results of novel view synthesis on Mill19 [46] dataset and Urban-Scene3D [25] dataset. ↑: higher is better, ↓: lower is better. The red, orange and yellow colors respectively denote the best, the second best, and the third best results. † denotes without applying the decoupled appearance encoding.

- Haithem Turkish, et, al. Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly Throughs. CVPR 2022
- Zhenxing Mi, Dan Xu. Switch-NeRF: Learning Scene Decomposition with Mixture of Experts for Large-scale Neural Radiance Fields. ICLR 2023
- Lin Jiaqi, et, al. VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction, CVPR 2024
- Kerbl, et, al. A Hierarchical 3D Gaussian Representation for Real-Time Rendering of Very Large Datasets, SIGGRAPH 2024

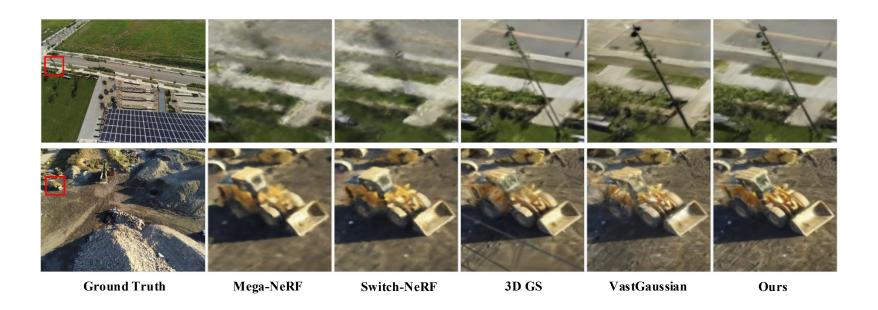
Faster Training Speed than 3DGS

Scenes	Building			Rubble			Campus			Residence				Sci-Art						
	Train ↓	Points	Mem	FPS ↑	Train ↓	Points	Mem	FPS ↑	Train ↓	Points	Mem	FPS ↑	Train ↓	Points	Mem	FPS ↑	Train ↓	Points	Mem	FPS ↑
Mega-NeRF 46	19:49	-	5.84	0.009	30:48	-	5.88	0.009	29:03	-	5.86	0.008	27:20	-	5.99	0.006	27:39	-	5.97	0.006
Switch-NeRF 31	24:46	-	5.84	0.009	38:30	-	5.87	0.009	36:19	-	5.85	0.007	35:11	-	5.94	0.007	34:34	-	5.92	0.008
3D-GS [18]	21:37	7.99	4.62	90.09	18:40	3.85	2.18	166.67	23:03	13.6	7.69	59.52	23:13	5.35	3.23	142.86	21:33	2.31	1.61	240.96
VastGaussian† [22]	03:26	5.60	3.07	121.35	02:30	4.71	2.74	163.93	03:33	17.6	9.61	47.84	03:12	6.26	3.67	118.48	02:33	4.21	3.54	120.33
DoGaussian	03:51	6.89	3.39	122.33	02:25	4.74	2.54	147.06	04:15	8.27	4.29	99.85	04:33	7.64	6.11	82.34	04:23	5.67	3.53	107.87

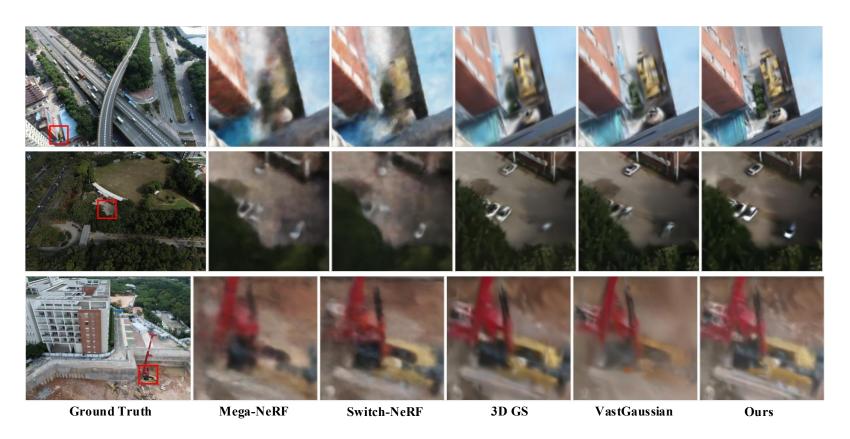
Table 2: Quantitative results of novel view synthesis on Mill19 dataset and UrbanScene3D dataset. We present the training time (hh:mm), the number of final points (10⁶), the allocated memory (GB), and the framerate (FPS) during evaluation. † denotes without applying the decoupled appearance encoding.

- Haithem Turkish, et, al. Mega-NeRF: Scalable Construction of Large-Scale NeRFs for Virtual Fly Throughs. CVPR 2022
- Zhenxing Mi, Dan Xu. Switch-NeRF: Learning Scene Decomposition with Mixture of Experts for Large-scale Neural Radiance Fields. ICLR 2023
- Lin Jiaqi, et, al. VastGaussian: Vast 3D Gaussians for Large Scene Reconstruction, CVPR 2024
- Kerbl, et, al. A Hierarchical 3D Gaussian Representation for Real-Time Rendering of Very Large Datasets, SIGGRAPH 2024

Higher Fidelity Novel View Synthesis – Mill19



Higher Fidelity Novel View Synthesis – UrbanScene3D



Higher Fidelity Novel View Synthesis

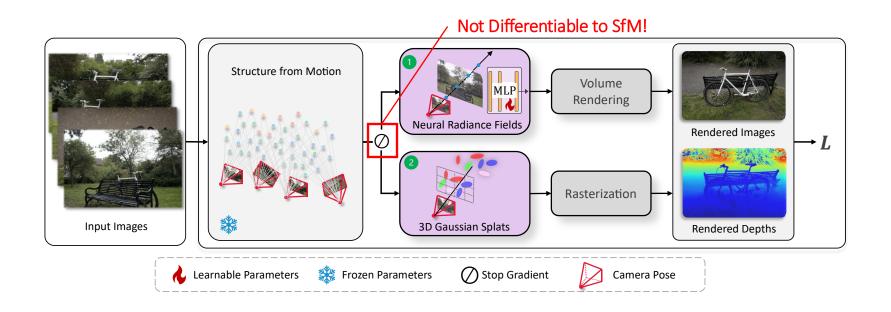
Importance of Consensus and Sharing



• w.o. CS: our method without the 3D Gaussian consensus

Limitations

Decoupled Camera Pose Estimation and Scene Reconstruction



Part #2

Develop <u>Distributed System</u> and <u>Neural Scene Representations</u> for <u>3D Reconstruction</u>, <u>Rendering</u>, and <u>Geometry Understanding</u>

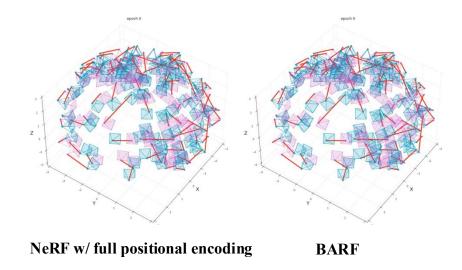
Bundle-Adjusting Neural Radiance Fields

Pros

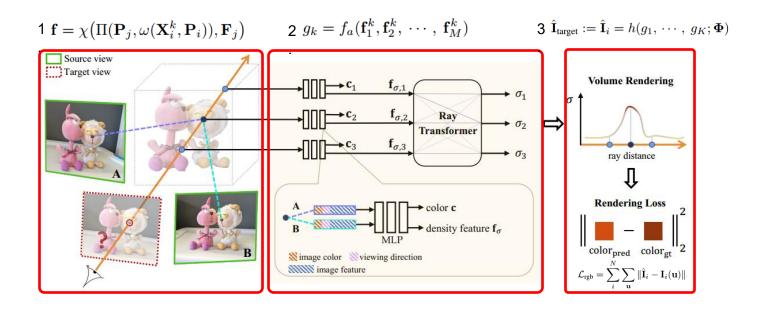
Refine inaccurate camera poses

Cons

- Trained on per-scene NeRF
- Camera poses initialization

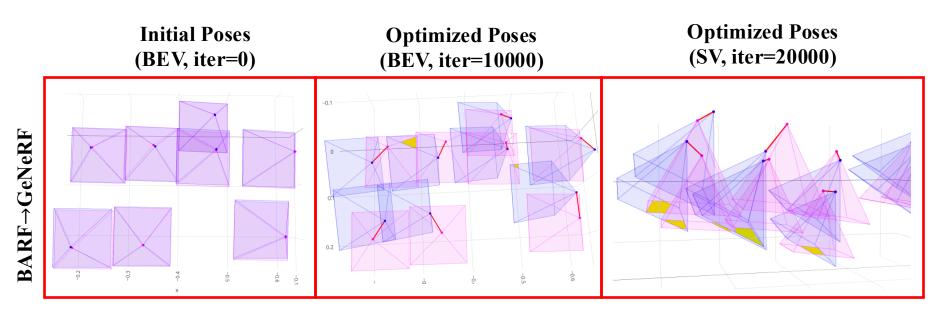


Generalizable Neural Radiance Fields



Can we bundle-adjust GeNeRF like BARF?

Bundle Adjusting GeNeRF is Difficult

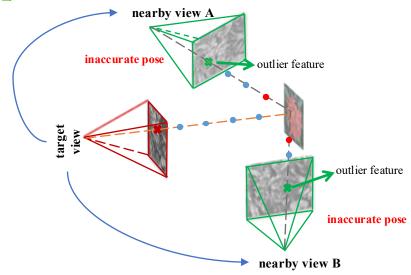


We adopted a pretrained GeNeRF model and constructed a $N \times 6$ learnable pose embedding like BARF. The pose embedding is jointly trained with the GeNeRF model and optimized by Adam with a learning rate 1e - 5.

Smooth Cost Feature Map for Joint Relative Poses

and GeNeRF Optimization

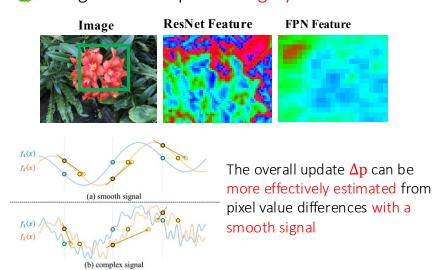
🔗 Occlusion contributes feature outliers



1. Relative poses are all we need

$$\Pi(\mathbf{P}_j, \omega(\mathbf{X}_i^k, \mathbf{P}_i)) = \mathbf{K}_j \mathbf{P}_j \mathbf{P}_i^{-1} \mathbf{X}_i = \mathbf{K}_j \mathbf{P}_{ij} \mathbf{X}_i^k$$

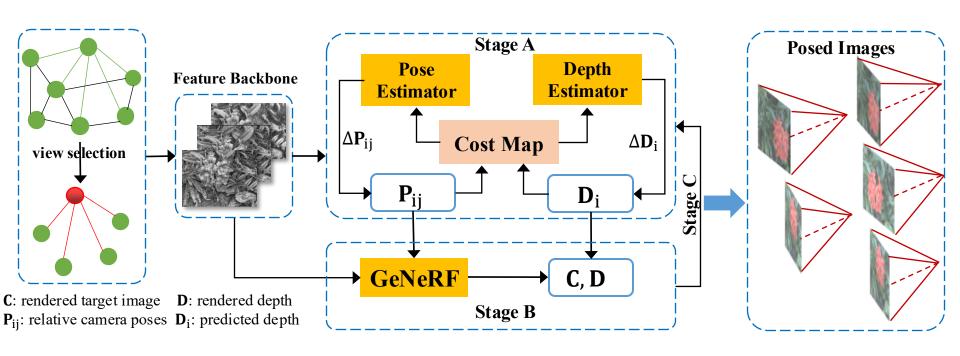
Image feature space is highly non-smooth



2. Smooth Cost Map as an Implicit Loss

$$C = \sum_{\mathbf{u}_i} \sum_{j \in \mathcal{N}(i)} \rho(\left[\chi(\mathbf{K}_j \mathbf{P}_{ij} \mathbf{X}_i^k, \mathbf{F}_j) - \chi(\mathbf{u}_i, \mathbf{F}_i)\right]$$
feature-metric error

Smooth Cost Feature Map for Joint Relative Poses and GeNeRF Optimization



Results

Comparable Results Compared to NeRF with GT Poses

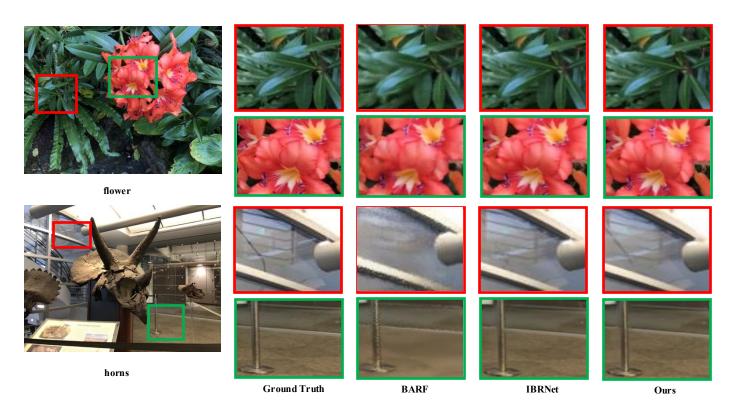
		I	SSIM ↑						LPIPS ↓									
Scenes	BARF [19]	BARF [19] GARF [4] IBRNet [46] Ours		BARF [19] GARF [4] _		IBRN	IBRNet [46] Ours		BARF[19]	GARF [4]	IBRN	et [46]	Οι	ırs				
		G.114 [1]	X	~	×	~		0.11.1	×	~	×	~	D. L [17]	0.11.1	X	~	×	~
fern	23.79	24.51	23.61	25.56	23.12	25.97	0.710	0.740	0.743	0.825	0.724	0.840	0.311	0.290	0.240	0.139	0.277	0.120
flower	23.37	26.40	22.92	23.94	21.89	23.95	0.698	0.790	0.849	0.895	0.793	0.895	0.211	0.110	0.123	0.074	0.176	0.074
fortress	29.08	29.09	29.05	31.18	28.13	31.43	0.823	0.820	0.850	0.918	0.820	0.918	0.132	0.150	0.087	0.046	0.126	0.046
homs	22.78	23.03	24.96	28.46	24.17	27.51	0.727	0.730	0.831	0.913	0.799	0.903	0.298	0.290	0.144	0.070	0.194	0.076
leaves	18.78	19.72	19.03	21.28	18.85	20.32	0.537	0.610	0.737	0.807	0.649	0.758	0.353	0.270	0.289	0.137	0.313	0.156
orchids	19.45	19.37	18.52	20.83	17.78	20.26	0.574	0.570	0.573	0.722	0.506	0.693	0.291	0.260	0.259	0.142	0.352	0.151
room	31.95	31.90	28.81	31.05	27.50	31.09	0.940	0.940	0.926	0.950	0.901	0.947	0.099	0.130	0.099	0.060	0.142	0.063
trex	22.55	22.86	23.51	26.52	22.70	22.82	0.767	0.800	0.818	0.905	0.783	0.848	0.206	0.190	0.160	0.074	0.207	0.120

Table 1. Quantitative results of novel view synthesis on LLFF [26] forward-facing dataset. For IBRNet [46] and our method, the results with (\checkmark) and without (\checkmark) per-scene fine-tuning are given.

Scenes	fern	flower	fortress	horns	leaves	orchids	room	trex
Rotation (X)	9.96	16.74	2.18	6.076	12.98	5.904	8.761	10.09
Rotation ()	0.89	1.39	0.586	0.819	4.63	1.164	0.530	1.057
translation (X)	2.00	1.56	1.06	2.45	2.56	5.13	5.48	8.05
translation (🖍)	0.34	0.32	0.23	0.29	0.85	0.57	0.36	0.46

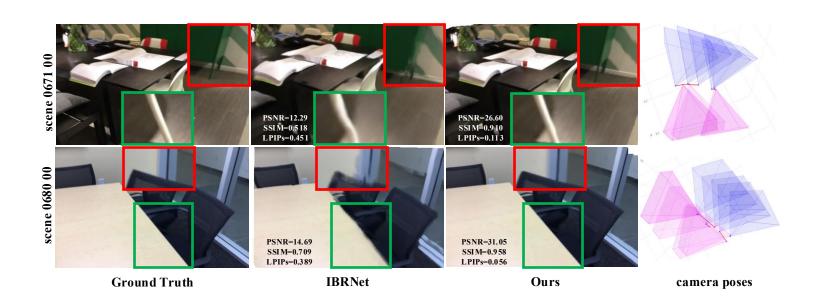
Table 2. Quantitative results of camera pose accuracy on LLFF [26] forward-facing dataset. Rotation (degree) and translation (scaled by 10^2 , without known absolute scale) errors with (\checkmark) and without (\checkmark) per-scene fine-tuning are given.

Comparable Results Compared to NeRF with GT Poses



Comparable Results Compared to NeRF with GT Poses

When poor camera poses are provided to NeRF - ScanNet



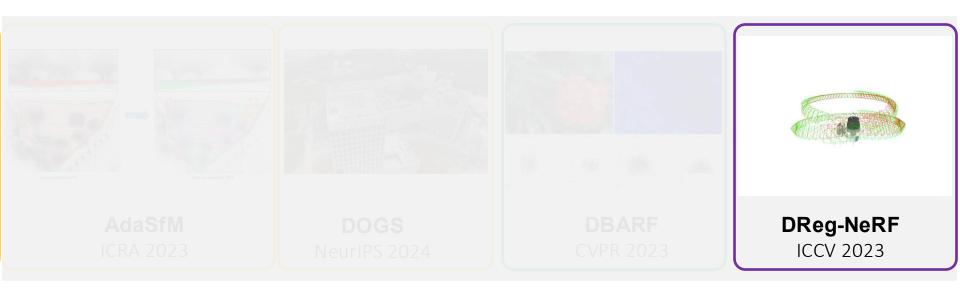
When poor camera poses are provided to NeRF - ScanNet

	PSNR	↑	SSIM	↑	LPIPS ↓			
Scenes	IBRNet [6]	Ours	IBRNet [6]	Ours	IBRNet [6]	Ours		
scene0671-00	12.29	26.60	0.518	0.910	0.451	0.113		
scene0673-03	11.31	23.56	0.457	0.859	0.615	0.156		
scene0675-00	10.55	19.95	0.590	0.875	0.589	0.207		
scene0680-00	14.69	31.05	0.709	0.958	0.389	0.056		
scene0684-00	18.46	33.61	0.737	0.975	0.296	0.052		
scene0675-01	10.33	23.56	0.595	0.899	0.548	0.166		
scene0684-01	14.69	33.01	0.678	0.967	0.426	0.056		

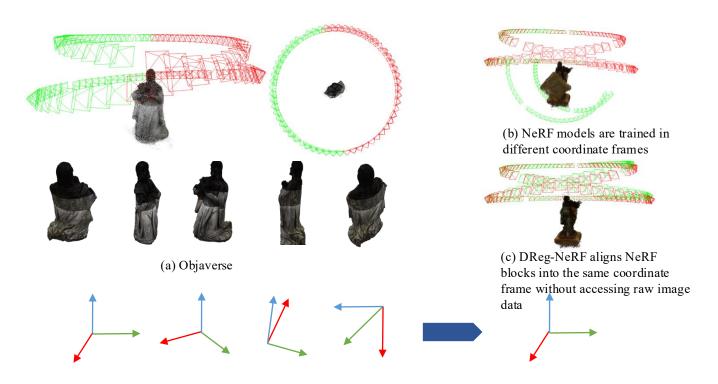
Quantitative results of novel view synthesis on ScanNet dataset after finetuning.

Part #3

Develop <u>Distributed System</u> and <u>Neural Scene Representations</u> for <u>3D Reconstruction</u>, <u>Rendering</u>, and <u>Geometry Understanding</u>



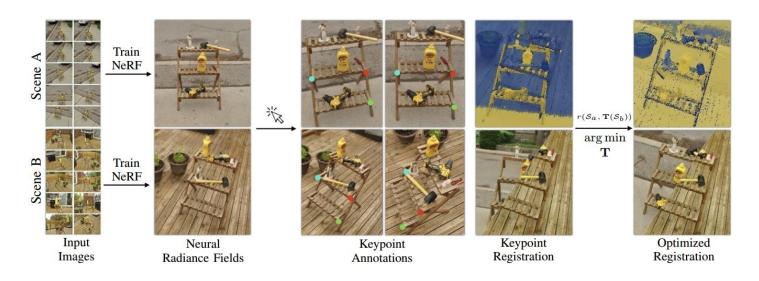
NeRF Registration



Register a pair of NeRF models that are trained in different coordinate frames into a same coordinate frame

Seminal Work

nerf2nerf: Pairwise Registration of Nueral Radiance Fields



Limitations

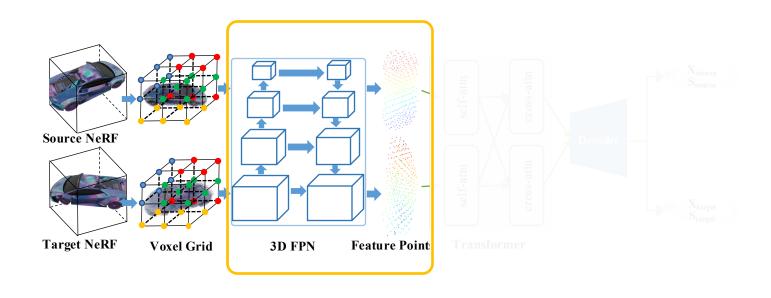
- Initialized from human annotated keypoints
- Based on traditional optimization method

Data Driven; End-to-End

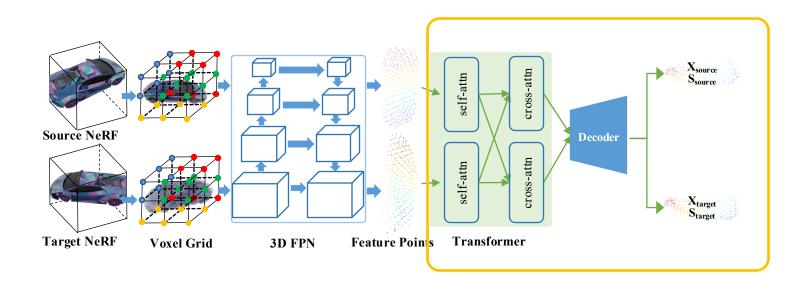
- NeRF2NeRF
 - Initialized from human annotated keypoints
 - Based on traditional optimization method
- Ours (DReg-NeRF)
 - Generalizable
 - End-to-end

Data Driven; End-to-End

NeRF Feature Extraction

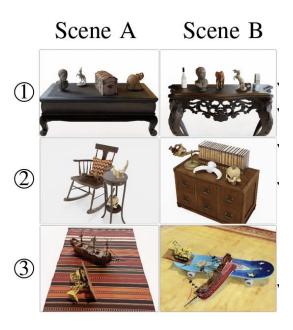


Enhanced Feature with Transformer



Absence of Training Data for NeRF Registration

- NeRF2NeRF
 - Not data driven
 - Contain only 6 synthesized scenes

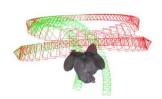


Selected 30+ categories, each category contains 40-80 objects

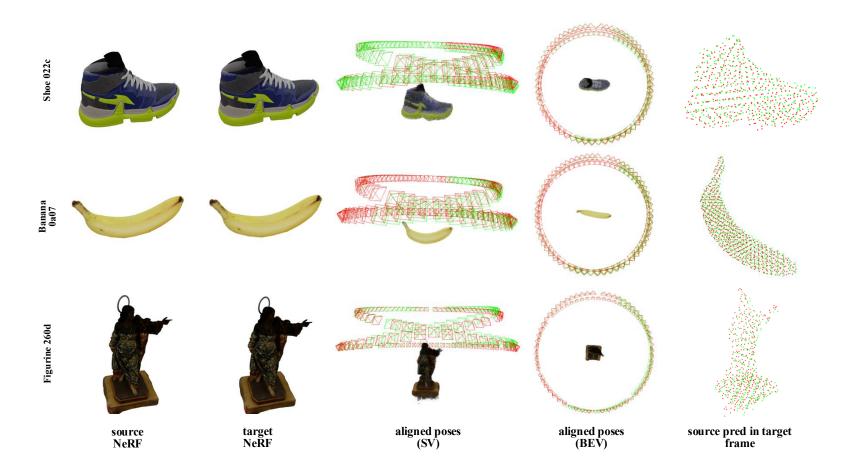
- Collected 1700+ 3D objects from Objaverse dataset
 - Render 120 images from distinct view points per object with blender
 - Take one week with 8 concurrent processes

Trained 1,700+ pairwise NeRF models

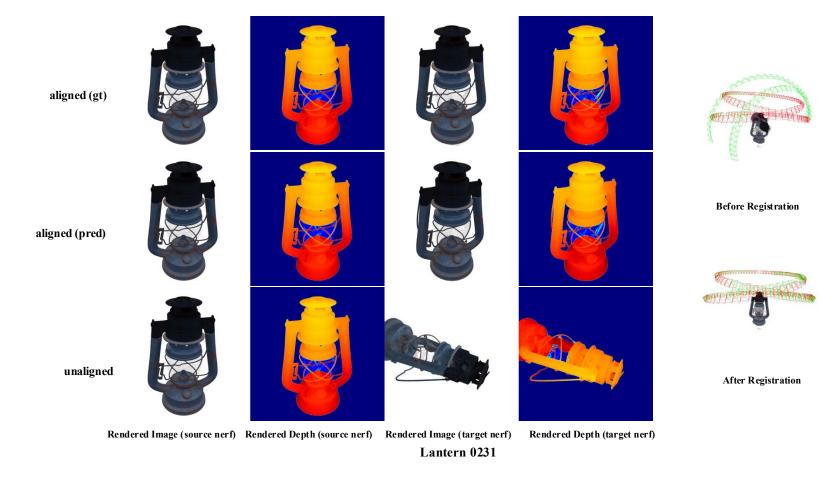


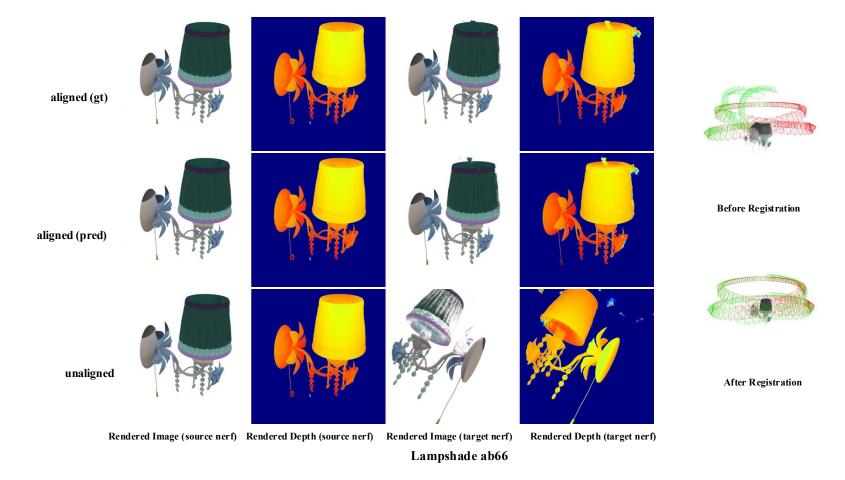


- Trained 1700+ pairwise NeRF models with the collected objects
 - Images are split into two blocks by KMeans
 - Perturb the coordinate frame with a randomly generated 3D transformation
 - Take one week with a 4090 GPU



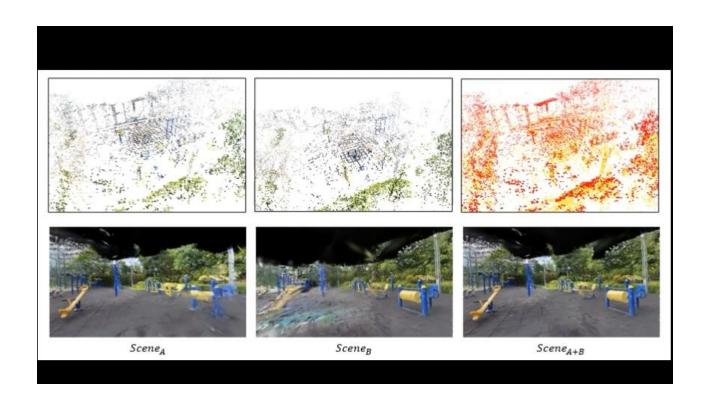






Inspired Follow-up Work

GaussReg – Scene Level

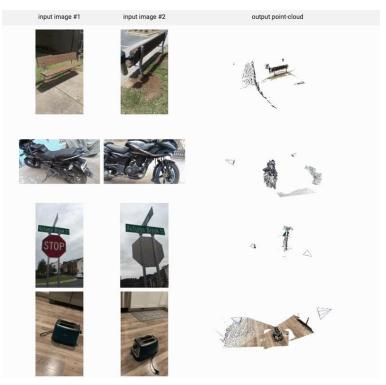


What is Next?

From 3D reconstruction to 3D foundation model

From DUSt3R to VGGT

Two Views to Multiple Views



32 Views

DUSt3R VGGT

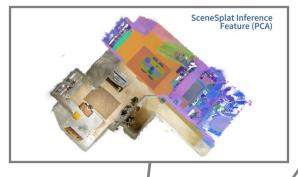
• Shuzhe Wang, et.al. DUSt3R: Geometric 3D Vision Made Easy. CVPR 2024

• Jianyuan Wang, et.al. VGGT: Visual Geometry Grounded Transformer. CVPR 2025 Best Paper Award

3D Foundation Model

Camera Pose Estimation

Scene Understanding



Unconstrained image collections

Unified Model

Dense Reconstruction

Scene Generation

Depth Estimation

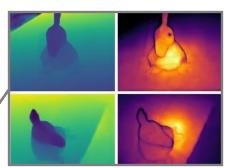
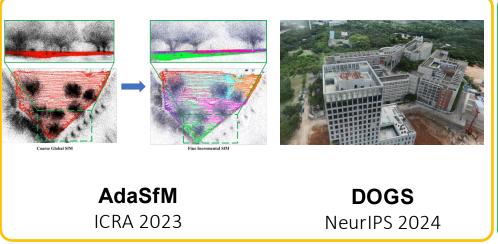
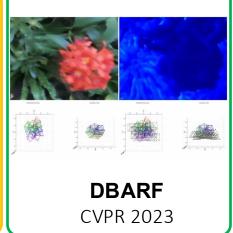


Image Matching

Large Scale Neural 3D Scene Reconstruction, Rendering, and Beyond

Chen Yu





Acknowledgements

Supervisor

Gim Hee Lee

Examiners

Angela Yao

Leow Wee Kheng

Collaborators

Li Jianming

Song Shu

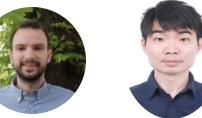
Yu Zihao

Yu Tianning

Low Wengfei

Yan Zhiwen

Rolandos Potamias Evangelos Ververas



Song Jifei

Deng Jiankang

Thanks for you listening!